I- I- Rl
\ Monthly Research

Understanding bypassing ASLR by a
pointer at a fixed address

FFRIInc.

http:/lwww.ffri.jp

FFRI
MS13-063 o

e Security patch published by Microsoft in Aug 2013
e Includes a fix for ALSR bypassing vulnerability(CVE-2013-2556)
e This slide is about the detail of the vulnerability and the fix

\
A summary of the ASLR bypassing vulnerability(CVE-2013-2556)
e Published in CansecWest2013

— This vulnerability alone does not allow an attacker to exploit an
application (need another vulnerability for successful exploit)

— This vulnerability allows an attacker to bypass ASLR if another
specific kind of vulnerability can be found.

FFR{
Details of the vulnerability
e This vulnerability was published with a title “DEP/ASLR bypass

without ROP/JIT” in CanSecWest2013 by Yang Yu.

e Mainly 2 problems
— In 32bit Windows, a pointer to KiFastSystemCall is at a fixed address

- In a 32bit process on 64bit Windows, a pointer to LdrHotPatchRoutine is
at a fixed address

Why these pointers at fixed addresses are problem?

-

Can be used to bypass ASLR if there is use-after-free/heap
overflow vulnerability which leads overwriting a pointer to a
vtable of C++ objects.

What is “overwriting a pointer to a vtable”

Preliminary knowledge : C++ object layout

FFRI
\

e C++ Object layout in general C++ implementation.

// Note that member functions are
class MyClass {
public:

MyClass () ;

virtual "MyClass();

virtual void doWork() ;
private:

int m_myVariable;
};

“virtual”

Instantiate

=)

MyClass object

A pointer to a vtable

m_myVariable

vtable for MyClass class

e How C++ calls member functions

// code to call doWork ()
// ecx has the address of a MyWorker object

mov eax, dword ptr [ecx] // eax is the address of the vtable

push ecx

call dword ptr [eax+4]

* The first argument for cdecl calling convention is “this” pointer

// argument for the function call ()
// call doWork() (the address is obtained from the vtable)

A 4

A pointer to ~MyClass()

A pointer to doWork()

FFRI
\

A problem of rewriting a pointer to a vtable

e What happens if a pointer to a vtable can be rewritten?

MyClass object
vtable for MyClass class

Rewrite here | A pointer to a vtable
m_myVariable A pointer to ~MyClass()
iale A pointer to doWork()

Somewhere in memory

A 4

Value in memory 1
Value in memory 2

—> 7?77

//The exactly same code from the previous slide.

//Rewriting a pointer to a vtable results in executing another function

mov eax, dword ptr [ecx] // eax is the address of vtable

push ecx // argument for the function call

call dword ptr [eax+4] // Execute the memory “Value in memory 2” points to

FFRI
\

In case of a pointer to KiFastSystemCall is at a fixed address

e Rewrite a pointer to a vtable in such a way that KiFastSystemCall is called
o KiFastSystemCall is a shared code to call system call in Windows
e ASLR is irrelevant in this scenario

Rewrite with a fixed value
by utilizing a vulnerability
(use-after-free/heap overflow)

MyClass object

A pointer to a vtable

vtable for MyClass class

m_myVariable

A pointer to ~MyClass()

A pointer to doWork()

Fixed address

A 4

Value in memory 1

KiFastSystemCallIADR1 >4

mov

push ecx
call dword ptr [eax+4]

eax, dword ptr [ecx] // eax is the address of vtable
// argument for the function call
// call KiFastSystemCal |

8-

KiFastSystemcCall is called.
However, calling system call with some arguments as an attacker intends to is difficult.

—|—> KiFastSystemCall

FFR{
Using LdrHotPatchRoutine

e In 64bit Windows, a pointer KiFastSystemCall does not exist at a fixed address.

e But 32bit processes on 64bit Windows have a pointer to LdrHotPatchRoutine at a fixed
address.

e LdrHotPatchRoutine internally loads a DLL which is specified via its argument.

struct HotPatchBuffer {

USHORT PatcherNameOffset; // An offset to a DLL name to load
USHORT PatcherNamelLen; // The length of the DLL
};
void LdrHotPatchRoutine (struct *HotPatchBuffer) ;

e A pointer to LdrHotPatchRoutine resides in SharedUserData in 32bit processes on 64bit
Windows

e SharedUserData is at a fixed address(0x7ffe0000)

Ox7ffe0000 SharedUserData
(fixed address) e

A pointer to LdrHotPatchRoutine

g

Overwrite C++ object in such a way that the vtable includes a pointer to LdrHotPatchRoutine.
DLL can be loaded.

— LdrHotPatchRoutine

FFRI
\

In case of a pointer to LdrHotPatchRoutine is at a fixed address

e Rewrite a pointer to a vtable in such a way as calling LdrHotPatchRoutine

Rewrite here by
utilizing a vulnerability

MyClass object

A pointer to a vtable

A vtable for MyClass class

A pointe to ~MyClass()

Construct here as a

A pointer to doWork()

HotPatchBuffer structure

Fixed address

Value in memory 1

A pointer to LdrHotPatchRoutine _\—>
LdrHotPatchRoutine

mov eax, dword ptr [ecx]
push ecx
call dword ptr [eax+4]

// eax is the address of vtable
// pass the object address as an argument
// call LdrHotPatchRoutine

.

» LdrHotPatchRoutine is called.
« Constructing an argument to LdrHotPatchRoutine (with a DLL name such as
¥¥192.168.1.100¥foo.dll) will results in loading a DLL on a server.

» Note that the object can be overwritten with arbitrary data when an
attacker overwrites a pointer to a vtable

//192.168.1.100/foo.dll

FFR{
The fix in MS13-063

e MS13-063 fixes the vulnerability in such a way that a pointer to
LdrHotPatchRoutine is not at a fixed address.

— Eliminate a function table in SharedUserData

- Move the function table to a data section in ntdll.dll and export it as
LdrSystemDIIInitBlock

[N] names in ntdll - |0O| x|/| [€]cpu - thread oooo188C - 10| x|
Address |Section |Type Hame ~[}| [7FFE0340] 0000 A0D BYTE PTR DS:[E&R], AL ‘ “ | Res
7713E1B3| .text |Export |LdrSetMUICacheType JEEEn242 | Annn AND BYTE PTR Ne-TEAY] Al A oy
TTO0DDSCL | .text Export IdrShutdownProcess I Y —|e>< dump ,&SCII ;ﬁ
::;96:;: -i“: ;"P"fz E‘?;“ﬁilnﬂ?‘;ﬂ . TI196742 p0 00 00 0000 00 22 Fa/00 00 06 FE|FF FF FF FF P$ '(.#llll E
‘ ':::: hz; :: 2: c:Z::: ::23:2: z i 24 07 08 77128 00 04 77/0C 00 04 77|88, wEEwl. wl..
770010 | rows |mepare |rarvmioaary o oreeee M 77196768 B4 FC 12 7| F1 26 0C 77|BB 26 0C 77|FS 26 0C 77[1- we wdhw- . |C
770CECEY .vext |Ewport |LdrUnlocklosderlock 77198773 (Bt 64 36 13 77(51 71 0E 77,00 00 09 77|12 wi6lwloow. .. |C
:;1%2&?%::2 :22:‘: fiﬁf_‘f‘izj‘:ezfﬂfgz:;:;;:3 77196785148 67 1T9N{7|00 00 00 00(00 00 00 00|00 00 00 OO0|HeMw........... L
e | o . e ————— TI196792(00 00 00 ONOO0 00 00 0000 00 00 00{07T 00 00 O0f............ ;E‘,.—I(
1 Rand d |?

77135DD5 | .= andomize £Virtuallmage 77196743|00 00 00 00|BD UH : LdrHotPatchRouti | !
771647C3 | .text |Expnrt ~Tfind 771967B2(00 00 00 00/ 00 0 A pomter to rHotPatc outine

TTARHI|| E=E2 Export |log Ll Z71007re0lan A0 an Aalan N9 A 700 N9 00 O0lon 00 o anl m hd Jid

e ASLR is enabled on ntdll.dll and it makes the address of the function table not

fixed.

Can not bypass ASLR to load a DLL by utilizing LdrHotPatchRoutine

FFRI
\

References

e http://technet.microsoft.com/ja-jp/security/bulletin/ms13-
063

e http://cansecwest.com/slides/2013/DEP-
ASLR%20bypass%20without%20ROP-JIT. pdf

e http://blogs.technet.com/b/srd/archive/2013/08/12/mitigatin
g-the-ldrhotpatchroutine-dep-aslr-bypass-with-ms13-
063.aspx

e http://www.cve.mitre.org/cqgi-bin/cvename.cqgi?name=CVE-
2013-2556

http://technet.microsoft.com/ja-jp/security/bulletin/ms13-063
http://cansecwest.com/slides/2013/DEP-ASLR bypass without ROP-JIT.pdf
http://blogs.technet.com/b/srd/archive/2013/08/12/mitigating-the-ldrhotpatchroutine-dep-aslr-bypass-with-ms13-063.aspx
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2556

FFRI
\

Contact Information

E-Mail : research-feedback©@ffri.ip

Twitter: @FFRI Research

mailto:research—feedback@ffri.jp
https://twitter.com/FFRI_Research

