
FFRI,Inc.

1

Monthly Research

Understanding bypassing ASLR by a 

pointer at a fixed address

FFRI,Inc.
http://www.ffri.jp

Ver 2.00.01



FFRI,Inc.

• Security patch published by Microsoft in Aug 2013

• Includes a fix for ALSR bypassing vulnerability(CVE-2013-2556)

• This slide is about the detail of the vulnerability and the fix

MS13-063

2



FFRI,Inc.

• Published in CansecWest2013

– This vulnerability alone does not allow an attacker to exploit an 
application (need another vulnerability for successful exploit)

– This vulnerability allows an attacker to bypass ASLR if another 
specific kind of vulnerability can be found.

A summary of the ASLR bypassing vulnerability(CVE-2013-2556)

3



FFRI,Inc.

• This vulnerability was published with a title “DEP/ASLR bypass 
without ROP/JIT” in CanSecWest2013 by Yang Yu.

• Mainly 2 problems
– In 32bit Windows, a pointer to KiFastSystemCall is at a fixed address

– In a 32bit process on 64bit Windows, a pointer to LdrHotPatchRoutine is 
at a fixed address

Why these pointers at fixed addresses are problem?

Can be used to bypass ASLR if there is use-after-free/heap 
overflow vulnerability which leads overwriting a pointer to a 
vtable of C++ objects.

What is “overwriting a pointer to a vtable”

Details of the vulnerability

4



FFRI,Inc.

• C++ Object layout in general C++ implementation.

• How C++ calls member functions

Preliminary knowledge：C++ object layout

5

A pointer to a vtable

// Note that member functions are “virtual”
class MyClass {
public:

MyClass();
virtual ~MyClass();
virtual void doWork();

private:
int m_myVariable;

};

Instantiate

m_myVariable
A pointer to ~MyClass()

A pointer to doWork()

MyClass object

// code to call doWork()
// ecx has the address of a MyWorker object
mov  eax,dword ptr [ecx]  // eax is the address of the vtable
push ecx  // argument for the function call(*)
call dword ptr [eax+4]    // call doWork() (the address is obtained from the vtable)

* The first argument for cdecl calling convention is “this” pointer

vtable for MyClass class



FFRI,Inc.

• What happens if a pointer to a vtable can be rewritten?

A problem of rewriting a pointer to a vtable

6

A pointer to a vtable

m_myVariable A pointer to ~MyClass()

A pointer to doWork()

MyClass object
vtable for MyClass class

Rewrite here

Value in memory 1

Value in memory 2

Somewhere in memory

???

//The exactly same code from the previous slide.
//Rewriting a pointer to a vtable results in executing another function
mov  eax,dword ptr [ecx]  // eax is the address of vtable
push ecx                  // argument for the function call
call dword ptr [eax+4]    // Execute the memory “Value in memory 2” points to 



FFRI,Inc.

• Rewrite a pointer to a vtable in such a way that KiFastSystemCall is called

• KiFastSystemCall is a shared code to call system call in Windows

• ASLR is irrelevant in this scenario

In case of a pointer to KiFastSystemCall is at a fixed address

7

A pointer to a vtable

m_myVariable
A pointer to ~MyClass()

A pointer  to doWork()

MyClass object
vtable for MyClass classRewrite with a fixed value

by utilizing a vulnerability
(use-after-free/heap overflow)

Value in memory 1

KiFastSystemCallへのポインタ

Fixed address

KiFastSystemCall

KiFastSystemCall is called.
However, calling system call with some arguments as an attacker intends to is difficult.

mov  eax,dword ptr [ecx]  // eax is the address of vtable 
push ecx  // argument for the function call
call dword ptr [eax+4]    // call KiFastSystemCall



FFRI,Inc.

• In 64bit Windows, a pointer KiFastSystemCall does not exist at a fixed address.

• But 32bit processes on 64bit Windows have a pointer to LdrHotPatchRoutine at a fixed 
address.

• LdrHotPatchRoutine internally loads a DLL which is specified via its argument.

• A pointer to LdrHotPatchRoutine resides in SharedUserData in 32bit processes on 64bit 
Windows

• SharedUserData is at a fixed address(0x7ffe0000)

Overwrite C++ object in such a way that the vtable includes a pointer to LdrHotPatchRoutine.

DLL can be loaded.

Using LdrHotPatchRoutine

8

…

…

0x7ffe0000

(fixed address)

SharedUserData

A pointer to LdrHotPatchRoutine

LdrHotPatchRoutine

struct HotPatchBuffer{
…
USHORT PatcherNameOffset;  // An offset to a DLL name to load
USHORT PatcherNameLen;     // The length of the DLL
…

};
void LdrHotPatchRoutine( struct *HotPatchBuffer);



FFRI,Inc.

• Rewrite a pointer to a vtable in such a way as calling LdrHotPatchRoutine

In case of a pointer to LdrHotPatchRoutine is at a fixed address

9

A pointer to a vtable

A pointe to ~MyClass()

A pointer to doWork()

MyClass object

mov  eax,dword ptr [ecx]  // eax is the address of vtable
push ecx  // pass the object address as an argument
call dword ptr [eax+4]    // call LdrHotPatchRoutine

A vtable for MyClass classRewrite here by 
utilizing a vulnerability

Value in memory 1

A pointer to LdrHotPatchRoutine

Fixed address

LdrHotPatchRoutine

• LdrHotPatchRoutine is called.
• Constructing an argument to LdrHotPatchRoutine (with a DLL name such as 

¥¥192.168.1.100¥foo.dll) will results in loading a DLL on a server.
• Note that the object can be overwritten with arbitrary data when an 

attacker overwrites a pointer to a vtable

Construct here as a 
HotPatchBuffer structure

//192.168.1.100/foo.dll


FFRI,Inc.

• MS13-063 fixes the vulnerability  in such a way that a pointer to 
LdrHotPatchRoutine is not at a fixed address.

– Eliminate a function table in SharedUserData

– Move the function table to a data section in ntdll.dll and export it as 
LdrSystemDllInitBlock

• ASLR is enabled on ntdll.dll and it makes the address of the function table not 
fixed.

Can not bypass ASLR to load a DLL by utilizing LdrHotPatchRoutine

The fix in MS13-063

10

A pointer to LdrHotPatchRoutine
Randomized



FFRI,Inc.

References

• http://technet.microsoft.com/ja-jp/security/bulletin/ms13-
063

• http://cansecwest.com/slides/2013/DEP-
ASLR%20bypass%20without%20ROP-JIT.pdf

• http://blogs.technet.com/b/srd/archive/2013/08/12/mitigatin
g-the-ldrhotpatchroutine-dep-aslr-bypass-with-ms13-
063.aspx

• http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2013-2556

11

http://technet.microsoft.com/ja-jp/security/bulletin/ms13-063
http://cansecwest.com/slides/2013/DEP-ASLR bypass without ROP-JIT.pdf
http://blogs.technet.com/b/srd/archive/2013/08/12/mitigating-the-ldrhotpatchroutine-dep-aslr-bypass-with-ms13-063.aspx
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-2556


FFRI,Inc.

Contact Information

E-Mail : research-feedback@ffri.jp

Twitter: @FFRI_Research

12

mailto:research—feedback@ffri.jp
https://twitter.com/FFRI_Research

